(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__f(b, X, c) → a__f(X, a__c, X)
a__c → b
mark(f(X1, X2, X3)) → a__f(X1, mark(X2), X3)
mark(c) → a__c
mark(b) → b
a__f(X1, X2, X3) → f(X1, X2, X3)
a__c → c
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(b, z0, c) → a__f(z0, a__c, z0)
a__f(z0, z1, z2) → f(z0, z1, z2)
a__c → b
a__c → c
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(c) → a__c
mark(b) → b
Tuples:
A__F(b, z0, c) → c1(A__F(z0, a__c, z0), A__C)
MARK(f(z0, z1, z2)) → c5(A__F(z0, mark(z1), z2), MARK(z1))
MARK(c) → c6(A__C)
S tuples:
A__F(b, z0, c) → c1(A__F(z0, a__c, z0), A__C)
MARK(f(z0, z1, z2)) → c5(A__F(z0, mark(z1), z2), MARK(z1))
MARK(c) → c6(A__C)
K tuples:none
Defined Rule Symbols:
a__f, a__c, mark
Defined Pair Symbols:
A__F, MARK
Compound Symbols:
c1, c5, c6
(3) CdtGraphRemoveDanglingProof (ComplexityIfPolyImplication transformation)
Removed 2 of 3 dangling nodes:
A__F(b, z0, c) → c1(A__F(z0, a__c, z0), A__C)
MARK(c) → c6(A__C)
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(b, z0, c) → a__f(z0, a__c, z0)
a__f(z0, z1, z2) → f(z0, z1, z2)
a__c → b
a__c → c
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(c) → a__c
mark(b) → b
Tuples:
MARK(f(z0, z1, z2)) → c5(A__F(z0, mark(z1), z2), MARK(z1))
S tuples:
MARK(f(z0, z1, z2)) → c5(A__F(z0, mark(z1), z2), MARK(z1))
K tuples:none
Defined Rule Symbols:
a__f, a__c, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c5
(5) CdtGraphRemoveTrailingProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(b, z0, c) → a__f(z0, a__c, z0)
a__f(z0, z1, z2) → f(z0, z1, z2)
a__c → b
a__c → c
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(c) → a__c
mark(b) → b
Tuples:
MARK(f(z0, z1, z2)) → c5(MARK(z1))
S tuples:
MARK(f(z0, z1, z2)) → c5(MARK(z1))
K tuples:none
Defined Rule Symbols:
a__f, a__c, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c5
(7) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
MARK(f(z0, z1, z2)) → c5(MARK(z1))
We considered the (Usable) Rules:none
And the Tuples:
MARK(f(z0, z1, z2)) → c5(MARK(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(MARK(x1)) = [5]x1
POL(c5(x1)) = x1
POL(f(x1, x2, x3)) = [1] + x2
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a__f(b, z0, c) → a__f(z0, a__c, z0)
a__f(z0, z1, z2) → f(z0, z1, z2)
a__c → b
a__c → c
mark(f(z0, z1, z2)) → a__f(z0, mark(z1), z2)
mark(c) → a__c
mark(b) → b
Tuples:
MARK(f(z0, z1, z2)) → c5(MARK(z1))
S tuples:none
K tuples:
MARK(f(z0, z1, z2)) → c5(MARK(z1))
Defined Rule Symbols:
a__f, a__c, mark
Defined Pair Symbols:
MARK
Compound Symbols:
c5
(9) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(10) BOUNDS(O(1), O(1))